# Keeping cows cool next summer

Draft – 28 Oct 22

# Set up phones with survey app

## Seminar Structure and timings

| • | Intro                                                               | Mark       |    |
|---|---------------------------------------------------------------------|------------|----|
| • | What is heat stress, what effects does it have?                     | Tom        | 10 |
| • | Is it a problem in Britain?                                         | Tom        | 10 |
|   | <ul> <li>Results from Lallemand research in 2022</li> </ul>         |            |    |
| ٠ | Heat Stress in housed systems                                       | Nico       | 20 |
|   | – Is it a problem                                                   |            |    |
|   | <ul> <li>What can we do about it – short, medium and lon</li> </ul> | g term     |    |
| • | Role of Levucell SC                                                 | Mark       | 10 |
| ٠ | Heat Stress when grazing                                            | Tom        | 20 |
|   | – Why is it a problem                                               |            |    |
|   | <ul> <li>What can we do about it – short, medium and lon</li> </ul> | g term     |    |
| ٠ | Summary, discussion, Q+A                                            | Mark et al | 20 |
|   |                                                                     |            |    |

#### What is heat stress?

## Excessive heat accumulation

Balance between
 Heat production and heat inputs
 Animal's ability to lose heat

Problem for both
 Grazing and Housed cows





#### Heat stress – sources of heat

#### Metabolic activity (FiM, 2004)

| Activity          | KW heat output |        |
|-------------------|----------------|--------|
| 20 l/day          | 1.22           |        |
| 40 l/day          | 1.61           |        |
| 60 l/day          | 2.00           |        |
| 40 weeks pregnant | 1.27           |        |
| Human             | 0.09           | 1.5 KW |

- Milk yieldsare increasing
- > Affects milking and dry cows
- Hot conditions further increase heat production



Effect of milk yield on heat output

Effect of ambient temperature on heat production



#### Heat stress – sources of heat

- » Radiant heat (sunshine)
- Major source of heat when grazing
- Measured using 'black globe'



Temperatures in shaded and nonshaded concrete holding pens



#### Global warming

- Rising average temperatures
- Rising numbers of 'hot' days
- > More extreme events
- > Heat Stress is a global, growing problem
- > Even if we hit +1.5'C problem will grow



Mapping changes in temperature: every year from 1850 to 2018



#### How does the cow loose heat?

#### > Ability to lose heat

- > Temperature and humidity of surrounding environment
- > Panting respiratory rate
- > Area of cow exposed to air
  - > Standing or lying down
- » Blood supply to skin
- > Sweating and evaporation minor
- > Cows will acclimatise (months-years)



#### Genetic adaption

- Slick gene improves animals ability to cope with heat
- Results from heifers in Florida
  - Control wild type Slick Gene -/-
  - Treatment heterozygous Slick gene +/-
- In medium term will be integrated into AI studs



#### How is heat stress measured?

- > THI Temperature Humidity Index
  - > USA NRC 1971
  - » Based on shed temperature and humidity
  - > Developed in hotter regions of USA
    - » Florida, Arizona, Georgia
  - > THI thresholds vary with underlying climate
    - > Cows acclimatise over several months
- Derive thresholds for moderate, high, severe



## Effect of THI score on dairy cow production

 Yield data from heifers in Northern Europe

| Assessment | Est. milk yield<br>loss (l/day) | THI Scores |
|------------|---------------------------------|------------|
| None       | 0                               | under 62   |
| Moderate   | 0 to 2                          | 62 to 72   |
| High       | 2 to 4                          | 73 to 79   |
| Severe     | over 4                          | over 79    |

- Losses start lower than USA thresholds would suggest
- Start at 18°C 20°C
   (%RH dependent)



Hammami, 2013

### Heat Stress at Grass

> Radiant heat (sunshine)

- Major source of heat
- » Not captured by THI
- Use Black Globe
   temperature to represent
   cow
- Measured with DHLI index (Aust)
  - » Dairy Heat Load Index



#### Effects of heat stress Reduced feed intake – reduced milk output

- Fall in intake only accounts for 50% of milk yield drop
- ~1 kg glucose 'lost' in balance trials (Baumgard,2020)
  - > intestinal inflammatory response





Li, 2019, QLD, AU

#### Effects of heat stress Reduced feed intake – reduced milk output



- » UK data
- » Summer, 2021
- > 2 day lag in milk drop
- Lost 3,000 I/day
  - > (400 cows)
- Forage supply issues after heat stress event

Effects of heat stress Increased panting

- > Cow pants to get rid of heat
- » Blows off carbon dioxide
- » Kidneys shed bicarbonate to compensate
  - » Cow becomes acidotic
- > Panting animal
  - » Fewer, bigger eating bouts
  - Less rumination



#### Effects of heat stress - Digestive upsets



Metabolic acidosis

> Due to panting

Increased salivation / drooling
 Saliva loss – reduced buffering
 Reduced rumination time
 Fewer bigger eating bouts

Fewer, bigger eating bouts
 All cause ruminal acidosis
 = Sick rumen



Li, 2020, QLD, AU

#### Effects of heat stress Lameness problems

- Increased standing time
   Increases skin area exposed
   Increases heat loss
- » Reduction in lying times
  - Falls 3 hours a day
- » Reduced blood circulation in foot
- Pathology to solar area
- Increase in solar ulcer issues
   2-3 months later







#### Effects of heat stress Fertility problems

- > Poorer energy status
- > ?Inflammatory component
- > Reduced oestrus signs
- > Poorer conception rates
- Increased EED



#### Effects of heat stress Water intake

- > Increased panting
- Increased salivation
- Increased sweating
- Cows will drink more water
- Higher peak demands
   When come out of shade







Cook, 2007, WI, USA

#### Effects of heat stress Mortality

- Max THI 80
  - Average daily THI 75
- Deaths have been seen on UK farms (SE England)



Vitali, 2009, JDS, Italy

Effects of heat stress Effects on dry Cows

- Raises resp rate (74 vs 48/min, p<0.01)</li>
   Reduces milk production in first 8 weeks (30.3 vs 33.1 kg/d, p<0.01)</li>
- Reduces DMI post partum (r=0.33, p=0.01)
- Reduces gestation length (r=0.24, p=0.08)
   Reduces calf birth weight (r=-0.20, p=0.09)

#### NOTE – Florida – Extreme THI values

#### Is heat stress a problem in Britain

#### Lallemand Farm Monitoring

- 9 farms monitoring in England
  - THI inside cow shed
  - DHLI outside cow shed
- Results streamed in real-time
  - On Lallemand website
  - On dedicated project website
  - Reported weekly via Linked In posts











## On farm THI scores: summer 2022

- Four heatwaves
- Heat stressed on 99 days (57%)
   Mild 85 days
  - High 7 days
  - -Severe None
- Heat stress season
   Early May
  - Mid September



## On farm DHLI scores: summer 2022

- Far more 'heat waves'
- More erratic in pattern
- Heat stressed on 37 days (22%)
  - Mild 35 days
  - High 2 days
- Heat stress 'season'
  - Mid June
  - Mid September



## Impact on milk yield

- Housed losses
  - 138 l/cow
    - Range 100 187

• Range 79 - 169

- Grazing losses
  - 129 l/cow





■ Housed ■ Grazing

#### Financial effect of heat stress

- No savings as milk yield falls
- Total cost is twice milk loss
   Cost (Cook, 2020)
- Average loss £128
   Min £96/cow
   Max £180/cow
- Herd losses £24k to £90k



Total losses per cow over summer

## Heat Stress in Scotland

- 5 Farms
- Csaba Adamik
- B Grazing
   Collecting yard
- A,C,D,X
  - Fully housed



## **Results from Scotland**

- Four heatwaves
- Heat stressed on 46 days (50%)
- Mild 45 days
- High 1 days
- Severe 0 days
- Heat stress season
  - Early June
  - Early September



#### **HEAT STRESS IN HOUSED SYSTEMS - NICO**



#### Heat stress at grazing - what can be done?





## Water

#### Critical

- > Clean and cool (<20°C)</p>
- > Ample linear space
- Near grazing area
   Under 100m walking
- > Avoid troughs emptying
  - > Thirsty cows
  - > Damaged troughs
- > High flow or high volume





Cook, 2017, WI, USA

#### Shade management



#### Shade

- > Biggest risk factor = direct sunlight
- Provide shade
  - > housing, awnings, trees etc
- $\succ$  Target 4 m<sup>2</sup> to 6 m<sup>2</sup> shade per cow
- Shade in grazing paddocks
   not easy to achieve required areas
- Maximise eating time / opportunities in evening
- > ?? 'Siesta' management
- Cows with shade (Palacio, 2015, Canada)
   At water trough less (x6.4)
   Lying down more (x1.7)



#### The need for shade

MaGo shed was



#### Siesta management

- Temperature peaks at 10:00am
- Starts to fall after 4:00pm
- Cows have 4-5 grazing bouts a day
   Evening bout is longest in high summer
- Proposed daily schedule
  - Graze after am milking
  - House at 10am
    - Buffer feed if necessary
  - Turn out after pm milking
- Would only miss one grazing bout



0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

Average for w/b 9 Aug 2022

#### Sunday 13 August 2018

• 83 cows, autumn calving, low yields (approx. 201/day)

8:30am 14'C All grazing



1:00pm 21'C Huddled



## Grazing platforms on UK dairy farms

Intensive grazing systems

- Many semipermanent paddocks
- Often subdivided
   for grazing bouts
- Many day grazing paddocks will have no shade.
- Cows huddle



#### Grazing platform on dairy farm in S Hants

## Providing shade at grazing

- Trees are best
  - Water movement through tree generates evaporative cooling
- Plant as many boundaries as possible
   – To get ~4<sup>2</sup> m/cow
- Not currently grant eligible
- Maybe difficult to establish
  - cows browse trees



## Actions to reduce heat stress at grazing

#### Short term

- 1. Make sure water troughs are working
- 2. Leaks, pipes, flow rates
- 3. Identify paddocks with best shading
  - Use for hot days
- 4. Feed additives in buffer feeding

### Medium term

- 1. 'Siesta' management
- 2. More water troughs
- 3. Better pipework
- 4. Milking times
- 5. Shade and fans in holding yards

## Long term

- 1. Plant trees
- 2. Genetic selection
  - Slick Gene
  - Heat tolerance in future genetic indexes

## SUMMARY, DISCUSSION, Q+A MARK ET AL

